Chapter-1

pp 36, Exercise Problem 1.10:
(i) (for Exercise problem 1.4) should be (for Exercise problem 1.7)
(ii) "in terms of PGA for 10% probability of exceedance" should be "in terms of PGA for 10% probability of exceedance in lyear".

Fig. 1.24/1.26, $\mathrm{P}[\mathrm{R}=\mathrm{r}]$ should be $\mathrm{P}[\mathrm{M}=\mathrm{m}]$

Chapter - 2

pp 45, Equation 2.10, should be $\phi_{n}=\tan ^{-1}\left(\frac{a_{n}}{b_{n}}\right)$
pp 48, Last two lines, $\frac{32 \pi}{(31 \times 0.02)}=335 \mathrm{rads}^{-1}$ should be $\frac{32 \pi}{(32 \times 0.02)}=157.07 \mathrm{rads}^{-1}$ and $d \omega=\frac{2 \pi}{T}=9.81 \mathrm{rads}^{-1}$
pp 49, 2 lines above section 2.4, the outputs from the FFT of MATLAB are divided by $\mathrm{N} / 2$ should be replaced by inputs i.e., x_{r} for FFT in MATLAB are divided by $\mathrm{N} / 2$
pp 50, below Equation 2.16, c_{n} is the absolute value of the complex quantity (Equation 2.9 should be replaced be Equation 2.13)
pp 63, remove [6]
pp 68, $2^{\text {nd }}$ line, O should be D
pp 79, Equation 2.43, PHA in cms^{-1} should be in cms^{-2}
pp 81 , Equation 2.54, PGA in cms^{-1} should be in cms^{-2}
pp 89, Example 2.11, (i) Kanai and Tajimi (Equation 2.73 should be 2.72)
(ii) Clough and Penzien (Equation 2.75 should be 2.74)
(iii) given by Equations 2.70, 2.71, 2.73 and 2.76 should be 2.70, 2.71, 2.72 and 2.74
pp 91, Equation 2.83, $e^{c\left(t-t_{2}\right)}$ should be $e^{-c\left(t-t_{2}\right)}$
pp 92, Equation 2.92, (i) terms within \exp should be with negative sign
(ii) $\omega_{0}=1.09$ should be $f_{0}=1.09$
pp 95, Exercise problem 2.18, Equation 2.69 should be 2.66
Figure 2.45 should be 2.46
Exercise problem 2.19, Equation 2.75 should be 2.74
Exercise problem 2.20, Equation 2.75 should be 2.74
Equation 2.94 should be 2.93
Equation 2.93 should be 2.92
Equation 2.95 should be 2.94
Exercise problem 2.21, Equations 2.84, 2.85 and 2.87 should be 2.83, 2.84 and 2.86 respectively.

Chapter-3

pp 100, 3.2.2 subheading, "Absolute motion" should be "Absolute motions"
pp 101, Equation $3.5 \mathrm{~b}, \mathrm{k}$ and c should be $\frac{\mathrm{k}}{\mathrm{m}}$ and $\frac{c}{\mathrm{~m}}$ respectively.
pp 104, Just above Example 3.2, u_{1} and u_{2} should be u_{1} and v_{1}
pp 108, $2^{\text {nd }}$ para, $2^{\text {nd }}$ line, "the other two DOF locked" should be "the other DOF locked" pp 110 , Equation 3.16, r should be placed after $\mathrm{M}_{\mathrm{ss}}, \mathrm{C}_{\mathrm{SS}}$ etc.
pp110, Equation 3.19, r should be placed after M_{ss} pp 111, Example 3.4,

$$
K_{r r}=\frac{E I}{3.6 L}\left[\begin{array}{ccc}
38.4 & 12 & 0 \\
12 & 48 & 12 \\
0 & 12 & 38.4
\end{array}\right] ; \quad K_{r r}^{-1}=\frac{L}{E I}\left[\begin{array}{ccc}
0.102 & -0.028 & 0.009 \\
-0.028 & 0.039 & -0.028 \\
0.009 & -0.028 & 0.102
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Second part of } \bar{K}_{u u} \text { matrix changes to } \frac{E I}{L^{3}}\left[\begin{array}{cccc}
8 & 5.33 & -8 & -4 \\
5.33 & 52 & -5.33 & 6.33 \\
-8 & -5.33 & 8 & 4 \\
-4 & 6.33 & 4 & 3.69
\end{array}\right] \\
& \bar{K}_{u s}=\frac{E I}{L^{3}}\left[\begin{array}{ll}
16.03 & 10.68 \\
10.68 & 129.5
\end{array}\right] \quad \bar{K}_{u s g}=\frac{E I}{L^{3}}\left[\begin{array}{cc}
-4 & -8 \\
5.33 & -22.3
\end{array}\right] \\
& r=-\bar{K}_{u s}^{-1} \bar{K}_{u s g}\left[\begin{array}{cc}
0.661 & -0.0054 \\
-0.0054 & 0.0082
\end{array}\right]\left[\begin{array}{cc}
-4 & -8 \\
5.33 & -22.3
\end{array}\right]=\left[\begin{array}{lll}
0.2926 & 0.4074 \\
-0.654 & 0.1389
\end{array}\right]
\end{aligned}
$$

pp.113, Example 3.5, K_{41} should be $-\frac{3}{2} \frac{A E}{l_{1}} \cos ^{2} \theta ; K_{71} \neq 0$, but $=-\frac{A E}{2 l_{1}} \cos ^{2} \theta$;

$$
K_{42} \neq 0, \text { but }=K_{71}
$$

pp 115, Example 3.6, A matrix, $4^{\text {th }}$ diagonal term should be -0.1025ρ pp .115 , r matrix is changed to

$$
r=-\left[\begin{array}{cccc}
-0.781 & -0.003 & 0.002 & -0.218 \\
-0.218 & 0.002 & -0.003 & -0.781 \\
-0.147 & -0.0009 & 0.0009 & 0.147
\end{array}\right]
$$

pp 123, Equation 3.79, $\mathrm{e}^{-\mathrm{i}}$ should be e^{i}
pp 123, 2nd line after Eqn 3.79, r=1----N and $\mathrm{k}=1---\mathrm{N}$ should be $\mathrm{r}=0----\mathrm{N}-1$ and $\mathrm{k}=0---\mathrm{N}-1$
pp 123, $2^{\text {nd }}$ paragraph, $6^{\text {th }}$ line, $2 \pi / T$ should be $2 \pi /(T+\Delta t)$
pp 123, $2^{\text {nd }}$ paragraph, $7^{\text {th }}$ line, $\omega_{i}=[(N / 2-1)]$ should be $\omega_{i}=N(\Delta \omega) / 2$
pp 123, after Eqn 3.80, $1^{\text {st }}$ line, $\mathrm{j}=1---\quad N / 2$ should be $\mathrm{j}=0---N / 2$
pp 123, last line, $(\mathrm{r}=1---\mathrm{N})$ should be $(\mathrm{r}=0---\mathrm{N}-1)$
pp 124, first line, $N / 2$ should be $N / 2+1$
pp 124, $2^{\text {nd }}$ line, $[(N / 2)-1] 2 \pi / T$ should be $N \pi /(T+\Delta t)$
pp $124,3^{\text {rd }}$ line, $\mathrm{j}=0$ to $(N / 2-1)$ should be 0 to $N / 2$
pp 124, $4^{\text {th }}$ line, $\omega_{j}=0$ to $(N / 2-1) \Delta \omega$ should be 0 to $N(\Delta \omega) / 2$
pp $124,5^{\text {th }}$ line, $j=0 \cdots(N / 2-1)$ should be $j=0 \cdots N / 2$
pp $124,6^{\text {th }}$ line, $j=N / 2$ should be $j=N / 2+1$
pp $124,7^{\text {th }}$ line, $j=N-1$ and $\mathrm{j}=0$ should be $\mathrm{j}=\mathrm{N}$ and $\mathrm{j}=1$
pp 124, Example 3.7, $\mathrm{C}_{1}=0.97, \mathrm{C}_{2}=0.0196, \mathrm{C}_{3}=1.31 \times 10^{-4}, \mathrm{C}_{4}=6.6 \times 10^{-5}, \mathrm{D}_{1}=-2.93, \mathrm{D}_{2}=0.946, \mathrm{D}_{3}=$ $9.69 \times 10^{-3}, D_{4}=9.87 \times 10^{-3}$
pp 125, Figure 3.11, u should be replaced be x pp 126, after ϕ matrix, $e^{\bar{\pi} \Delta T}$ should be $e^{\bar{\lambda} \Delta t}$ and $e^{A \Delta T}$ should be $e^{A \Delta t}$
pp 128, Equation 3.91, α should be replaced β
pp.131, Example 3.9, $r=\left[\begin{array}{ll}0.2926 & 0.4074 \\ -0.654 & 0.1389\end{array}\right]$;
Figure 3.14 b will have 0 ordinates $\quad K=\frac{E I}{L^{3}}\left[\begin{array}{cc}16 & 10.49 \\ 10.49 & 129\end{array}\right]$
pp 135, Values of Matrix A should be multiplied by m
pp.138,Example 3.11, $r=-\left[\begin{array}{cccc}-0.781 & -0.003 & 0.002 & -0.218 \\ -0.218 & 0.002 & -0.003 & -0.781 \\ -0.147 & -0.0009 & 0.0009 & 0.147\end{array}\right]$ The peak values of z_{1}, z_{2} and z_{3}
(given in the first row of Table 3.4) change to $0.0377 \mathrm{~m}, 0.025 \mathrm{~m}$ and 0.02 m respectively.
pp 136, Figure 3.17b, should be replaced by the new Figure given at the end of Errata of Chapter-3 pp 139, $2^{\text {nd }}$ paragraph, $2^{\text {nd }}$ line, after 45 s duration, add (a segment of 35 s is shown in the figure)
pp 142, Equation 3.115, $\rho_{i}=\frac{\sum_{r=1}^{n} m_{r} \phi_{i r}}{M}$ should be $\rho_{i}=\frac{\sum_{r=1}^{n} \lambda_{i} m_{r} \phi_{i r}}{M}$
pp.142, after Equation 3.115 and after " where ", add " λ_{i} is defined by Equation 3.114 for single support excitation".
pp 147, Table 3.6, all - 0.0001 should be replaced by -0.0015
pp 147, Above Section 3.5.7, $2^{\text {nd }}$ line, time histories of the moment should be replaced by time histories of the shear
pp 152, Figure 3.23, black dot showing the mass is missing for the $3^{\text {rd }}$ mass from the left.
pp 160, Figure 3.35a, F_{2} should be changed to $\mathrm{F}_{1} ; 1 L \frac{\sqrt{13}}{6}$ should be $\frac{\sqrt{13}}{6} L$; a force vector \bar{F}_{4} must be shown at the base of right hand column.
pp 160-161, all M should be changed to m

Chapter-4

pp 172, Figure 4.1, $\mathrm{t}, \mathrm{t}_{1}$ should be changed to $\mathrm{t}_{1}, \mathrm{t}_{2}$ respectively and within the gap τ should be shown pp 173, $1^{\text {st }}$ line, sample s should be samples and equation should be corrected as $\sigma_{x i}^{2}=\frac{1}{T} \int_{0}^{T}\left[x_{i}(t)-\bar{x}_{i}(t)\right]^{2} d t$
pp 175, $k=0 \ldots \ldots N / 2-1$
pp $178,4^{\text {th }}$ para, $8^{\text {th }}$ line: $\phi \neq 225^{\circ}$, but 180°
pp $179,2^{\text {nd }}$ line of Equation 4.29 should be omitted
pp180, after equation 4.32b, $\boldsymbol{a}=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]$
pp 183, $3^{\text {rd }}$ line from bottom, $S_{\check{x} g}$ should be $S_{\ddot{x}_{g}}$
pp 184, Equation 4.68 should be $S_{X X X}=\left(i \omega S_{X}\right)^{* T}$ and Equation 4.69a should be $S_{X}=\left(-\omega S_{X}\right)^{* T}$
pp 184, below Equation 4.69a, the line should be replaced by; As S_{X} is a complex matrix with diagonal terms as real quantities, it is found that
pp 186, Equation 4.76 should be $S_{\ddot{x}_{g} x}=-H M I S_{\ddot{x}_{g}}$
pp 187, just above section 4.9.2, 0.0154 should be 0.0154 m pp 188, just above the last equation, Equation 2.93 should be replaced by Equation 2.93 (with $\mathrm{c}=1$)
pp 189, Example 4.3, $K=\frac{E I}{L^{3}}\left[\begin{array}{cc}16 & 10.49 \\ 10.49 & 129\end{array}\right] ; r=\left[\begin{array}{ll}0.2926 & 0.4074 \\ -0.654 & 0.1389\end{array}\right]$
the rms responses are to be corrected as: $\operatorname{DOF}(4)=0.0237 \mathrm{~m} \quad \operatorname{DOF}(5)=0.00081 \mathrm{~m}$ for partially correlated; $\operatorname{DOF}(4)=0.0332 \mathrm{~m} \quad \operatorname{DOF}(5)=0$ for fully correlated

The figure 4.14a should be removed; caption of the figure should be changed accordingly
pp 191, $1^{\text {st }}$ line Equation 4.36 should be replaced by Equation 4.37
pp 191, add after Equation 4.83; if $S_{x g}$ is a complex matrix, then $S_{x x_{g}}=S_{x_{g} x}{ }^{*} T$
pp 193, Section 4.10, $3^{\text {rd }}$ line, Figure 4.7 should be Figure 3.7
pp 193, Section 4.10, all $\theta, \mathrm{x}, \delta$ should be in bold
pp 196, Equation 4.98, $h_{i} h_{j}{ }^{*}$ should be $h_{i} h_{j}{ }^{*}$
pp 197, $2^{\text {nd }}$ line, Equation 2.93 should be Equation 2.93 (with $\mathrm{c}=1$)
pp 197, below \mathbf{r}, add the following;

$$
\rho_{1}=\exp \left(-\frac{5 \omega}{2 \pi}\right) ; \rho_{2}=\exp \left(-\frac{10 \omega}{2 \pi}\right) ; \rho_{3}=\exp \left(-\frac{15 \omega}{2 \pi}\right) \boldsymbol{S}_{\ddot{x}_{g}}=\left[\begin{array}{cccc}
1 & \rho_{1} & \rho_{2} & \rho_{3} \\
\rho_{1} & 1 & \rho_{1} & \rho_{2} \\
\rho_{2} & \rho_{1} & 1 & \rho_{1} \\
\rho_{3} & \rho_{2} & \rho_{1} & 1
\end{array}\right] S_{\ddot{x}_{g}}
$$

pp 197, Example 4.6, rms values of displacement of DOF (1), left tower, and $\operatorname{DOF}(3$, not 2 as printed), centre of the deck should be corrected as 0.0219 m and 0.0152 m respectively.

Chapter-5

pp 214, Example 5.3, $1^{\text {st }}$ line, (.... Example 3.9) should be (.... Example 3.1)
pp 216, above Equation 5.24a, (foe $\mathrm{s}=3$ and $\mathrm{m}=3$) should be (for $\mathrm{s}=3$ and $\mathrm{m}=2$)
Equation 5.24a: $\bar{\phi}_{2} \beta_{21}$ should be $\bar{\phi}_{2} \beta_{12}$
Equation 5.24 b should be modified as, $\overline{\mathbf{z}}^{T}=\left\{\begin{array}{llllll}\overline{\mathrm{Z}}_{11} & \overline{\mathrm{Z}}_{21} & \overline{\mathrm{Z}}_{31} & \overline{\mathrm{Z}}_{12} & \overline{\mathrm{Z}}_{22} & \overline{\mathrm{Z}}_{32}\end{array}\right\}$
Equation 5.27b, $\bar{\phi}_{m} \beta_{11} D_{1 m}$ should be $\bar{\phi}_{m} \beta_{1 m} D_{1 m}$ and $\bar{\phi}_{m} \beta_{s 1} D_{s m}$ should be $\bar{\phi}_{m} \beta_{s m} D_{s m}$
pp 218, Example 5.4, $\bar{\phi}$, r should be made bold and $\boldsymbol{\phi}_{\beta D}$ should be $\boldsymbol{\phi}_{\beta D}^{T}$
pp 219, above Example 5.5, (Example 3.10....) should be (Example 3.8....)
pp 221, Figure 5.5, Caption (b) SDOF is to.... Should be (b) SDOF to.....
pp 222. Example 5.6, For Example 3.5....should be replaced by For Exercise Problem 3.18...
pp 225, Equation 5.43, $\sum\left|\left(V_{b}\right)\right|$ should be replaced by $\sum\left|\left(V_{b i}\right)\right|$
pp 227, Figure 5.7 is wrong plots of Equations 5.46 and 5.47. The values of c_{h} and $\frac{A}{g}$ should be obtained directly from the given Equations (revised Figure 5.7 is given at the end of Errata of Chapter-5)
pp 228, In Equation 5.51b, replace U by v ; U in Equation 5.51a is defined as a calibration factor. pp 229, In Figure 5.9, top curve is for $Z_{a}>Z_{v}$; middle one is for $Z_{a}=Z_{v}$; last one is for $Z_{a}<Z_{v}$. pp 231, (i) Figure 5.11 is drawn for stiff soil
(ii) In Figure 5.12, categories 1 and 3 refer to stiff and soft soils respectively.

Figure 5.7: Variation of C_{h} and A / g with time period T

Chapter-6

pp 241, Section 6.2.2.3, Equation 6.3, should be Equation 6.8
pp 241, Example 6.1, solution, $\Delta \ddot{x}_{g}$ should be $=-0.0312$ or -0.00312 g
pp242, Figure 6.3, 0.147 m should be 0.0147 m
pp 242, $6^{\text {th }}$ line from bottom, Δx should be $=-0.00004156$
pp 242, $8^{\text {th }}$ line from top, Δx_{2} and $\Delta \dot{x}_{2}$ should be Δx and $\Delta \dot{x}$
pp 242, last two equations should be replaced by

$$
\begin{aligned}
& \Delta \dot{x}_{1}=\frac{2}{\Delta t} e \Delta x-2 \dot{x}_{t} \\
& \dot{x}_{t}+\Delta \dot{x}_{1}=0 \text { gives } \\
& e=-6.8 ; \Delta x_{1}=0.000283
\end{aligned}
$$

pp 243, $3^{\text {rd }}$ line, $\Delta x_{2}=0.00028$ should be replaced by $\Delta x_{2}=-0.000325$
pp 243, last equation, should be corrected to $f_{x(t+\Delta t)}=f_{x t}+k_{t} \Delta x_{2}=1.4435 \mathrm{~N}$
pp 244, Figure 6.5 a , all k should be $\mathrm{k} / 2$
pp 245, $4^{\text {th }}$ and $5^{\text {th }}$ lines from bottom, k should be $\mathrm{k} / 2$
pp 246, $\quad \mathrm{K}_{\mathrm{t}} \quad$ matrix \quad should \quad be $\left[\begin{array}{ccc}100 & -100 & 0 \\ -100 & 200 & -100 \\ 0 & -100 & 100\end{array}\right]$ and $\overline{\boldsymbol{K}} \quad$ should be
$10^{4} \times\left[\begin{array}{ccc}1.026 & & \text { sym } \\ -0.0124 & 1.026 & \\ 0 & -0.0124 & 1.0137\end{array}\right]$
pp 259 , Example 6.5 , solution, $1^{\text {st }}$ line, 1 and 6 should be 1 and 2
pp 262, step iv $\Delta_{1 n}=\sum_{i=1}^{n} \delta \Delta_{1 i} ;$ Step vii $V_{B i}$ Vs $\Delta_{1 i}$
pp 269, equation 6.41, ${ }^{\text {nd }}$ equation, T_{c} should be T_{c} !
pp 273, Exercise problem 6.12, at the end of the problem, add $\xi=5 \%$
pp 274, In Figure 6.32, section B is at the left end of the third beam from the bottom

Chapter-7

pp 277, last para, $2^{\text {nd }}$ line, creast should be crust pp 294, $2^{\text {nd }}$ para, $3^{\text {rd }}$ line, $\left(V_{I}-u_{g}\right)^{T}$ should be $\left(V_{I}-I u_{g}\right)^{T}$
pp 295, Section 7.5.2, $1^{\text {st }}$ line, soil-structure foundation should be soil-structure-foundation pp 298, $5^{\text {th }}$ line, flooring should be footing pp 300, Figure 7.30, v(t) should be $u(t)$
pp 301, Equation 7.50, should be $-\left[\begin{array}{c}V_{b} \\ M_{b}\end{array}\right]=\boldsymbol{G}_{d}(\omega)\left\{\begin{array}{c}v(\omega) \\ \theta(\omega)\end{array}\right\}$
pp 315, Equation 7.77, $\frac{1}{2} \bar{m} \omega_{i}$ should be $\frac{1}{2} \bar{m}_{i} \omega_{i}$
pp 320, Section 7.6.3, $1^{\text {st }}$ line, Figure 7.46 should be 7.47
pp 320; Example 7.9: First line should read as: It is assumed that a building frame is pile founded in soft soil...(of Exercise 7.5 should be omitted)
pp 322: first line; Exercise 7.4 should be Example 7.4
pp 325: Example 7.10, solution, $C_{s}=\rho V_{s} S_{u} r l$ should be replaced by $C_{s}=\rho V_{s} \bar{S}_{u} r l$
pp 330, Example 7.11, $4^{\text {th }}$ line, ξ for the pipe $=2 \%($ not $5 \%)$
pp 331, $1^{\text {st }}$ line, should read as, Stiffness and mass matrices for the structure, shown in Figure 7.57, are obtained as
pp 331, in matrix $[K]_{l}, 3^{\text {rd }}$ element of $6^{\text {th }}$ row should be $-\frac{l}{2}$ (not 0); $4^{\text {th }}$ element of $7^{\text {th }}$ row should be $-\frac{l}{2}(\operatorname{not} 0)$;

In \bar{K}_{l} matrix, $4^{\text {th }}$ diagonals value should be 19.75 (not 23.17);
In \bar{K}_{a} matrix, $2^{\text {nd }} 3^{\text {rd }}$ and $4^{\text {th }}$ diagonal values should be 60 (not 6);
Note: For all exercise problems, take $\xi=5 \%$ for both soil and structure wherever these material damping are not mentioned.

Chapter-8

pp 339, Equation 8.14, $\frac{\partial^{2} \boldsymbol{G}}{\partial x_{i} \partial x_{j}}$ should be $\left(\frac{\partial \boldsymbol{G}}{\partial x_{i}}\right)\left(\frac{\partial \boldsymbol{G}}{\partial x_{j}}\right)$
pp 340, Equation 8.17, \boldsymbol{X}_{d} should be $\boldsymbol{X}_{d}^{\prime}$
pp 341, Equation 8.26, $\left(\frac{\partial G}{\delta x_{d i}^{\prime}}\right)$ should be $\left(\frac{\partial G}{\partial x_{d i}^{\prime}}\right)$
pp 343, last para above Section 8.4.4, add at the end,space at the design point.
pp 344, Equation 8.35, denominator P_{f} should be \bar{P}_{f}
pp 352, 357, Examples 8.3, 8.5: Damping of the structure ξ should be taken as 5%
pp 360, Below Table 8.7, $\sum(8)(11)$ means multiplication of values of columns 8 and 11 of Table 8.7
etc.
pp 360, in Table 8.7, $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ should be replaced by $\mathrm{P}_{1}, \mathrm{I} ; \mathrm{P}_{2}, \mathrm{I} ; \mathrm{P}_{3}, \mathrm{I}$ respectively pp 365, Exercise problem 8.8, at the end of the problem, add $\xi=5 \%$

Chapter 9

pp 384, Equation 9.23a, $\Delta \ddot{\boldsymbol{v}}_{b}$ should be $\Delta \ddot{\boldsymbol{v}}_{s}$
pp 386, in K matrix, last entry 0.431 should be aligned with -0.431
pp 390, the line above Equation 9.48, vector should be vectors
pp 404, Equation 9.68b, \ddot{x}_{g} should be $\ddot{x}_{g_{0}}$
pp 405, Equation 9.69a, \ddot{x}_{g} should be $\ddot{x}_{g_{0}}$
pp 407, Equation 9.75d: in \bar{K} matrix, all k should be k_{t}
pp 408, Example 9.5, add at the end of the problem, $\xi_{t}=2 \%$; take ξ for the frame as 5%.
pp 409, matrices, \mathbf{K}, \mathbf{M} and \mathbf{C} should be $\overline{\boldsymbol{K}}, \overline{\boldsymbol{M}}$, and $\overline{\boldsymbol{C}}$
pp 409, $\overline{\boldsymbol{C}}$ matrix, last but one raw, $512.3 \quad$ 0, should be $527.7 \quad-15.4$
pp 409, $\overline{\boldsymbol{C}}$ matrix, last raw, $0 \quad 15.4$, should be $-15.4 \quad 15.4$
pp 410 and 411, Figs 9.42 and 9.43, time scale 35 s as in Figure 9.41
pp 419, Example 9.6, Solution: $1^{\text {st }}$ line; Example 9.4 should be 9.5
pp 428, $1^{\text {st }}$ line, Equation 9.153 b should be Equation 9.156 b
pp 440, Equation $9.190, \frac{\tau}{2}$ should be $\frac{\tau^{2}}{2}$
pp 443, $3^{\text {rd }}$ para, $2^{\text {nd }}$ line, the damping coefficient should be damper coefficient pp 444, after the $1^{\text {st }}$ line, \mathbf{K} (Equation 9.201 b) should be \boldsymbol{K}_{s} (stiffness matrix)

